
Spring(Boot) Configuration

 

Łukasz  Sikora
sikora.lukasz.sl@gmail.com



About...



Spring Configuration  history

● XML configuration was available since 
always. At that time it was considered 
lighter than Java EE which was 
industry standard

● Spring  took one part of EJB 
specification, namely container based 
dependency injection and it became 
Spring Core



Spring Configuration  history
● <context:annotation-config/> 
    <context:component-scan base-> 

introduced in spring 2.5

● @ComponentScan 
introduced in Spring 3.0

● @Configuration 
introduced in Spring 3.0



Component scan
● When Spring 3.0 came out people 

where already allergic to XML
● Most projects moved to use XML 

mostly for

<context:annotation-config />
<context:component-scan base-package="com.xxx" />



Spring Configuration  history
● @Configuration classes are with us as 

long as @ComponentScan
● Extensive use of Java configuration 

classes came with time and partially 
Spring Boot



Component scan hell
● Package scan has been overused to 

the extent when core application 
package has been scanned

● This led to problems with beans 
implementing same interfaces (Where 
the heck is second bean instance 
coming from?)

● Programmers were left with huge 
contexts of beans floating around just 
like global variables



Fun fact

● Spring was created as lightweight 
alternative to Java EE, both based on XML 
configuration

● With Spring 3.0 released at 2009, Spring 
bandwagon started to laugh about Java EE 
XML configuration heaviness when Spring 
had configuration through annotations

● But Java EE had annotations like @Remote for 
EJB creation since 1.5 which was released 
2006



Final method that creates BlackBean

● @Configuration will show error if 
method has incorrect modifier
 

● and fails miserably
org.springframework.beans.factory.parsing.BeanDefinitio
nParsingException: Configuration problem: @Bean 
method 'blackBean' must not be private or final; 
change the method's modifiers to continue
Offending resource: class path resource 
[somebody/somewhere/xmlvsjavaconfig/configuration/NewAn
dShiny.class]



XML version
● Just works

someBlackBean     
xmlvsjavaconfig.commonbeans.BlackBean
@338c99c8



Chickpea bean has private constructor

public class Chickpea {
    private SimpleBeanFactoryAwareAspectInstanceFactory 
springBean;

    public Chickpea(SimpleBeanFactoryAwareAspectInstanceFactory springBean)
{
        this.springBean = springBean;
    }

    private Chickpea() {
    }

    public SimpleBeanFactoryAwareAspectInstanceFactory getSpringBean() {
        return springBean;
    }
}



Our application
@Bean
public CommandLineRunner commandLineRunner(ApplicationContext ctx){
    return args->{

    System.out.println("Let's inspect the beans provided by Spring Boot:");
    System.out.println("chickpea"+" "+ctx.getBean("chickpea"));
    System.out.println("simpleBeanFactoryAwareAspectInstanceFactory"+" "+

    ((Chickpea)ctx.getBean("chickpea")).getSpringBean());
    };
  }
}



Java Config does not compile

● Compilation simply fails because non 
parameter constructor is private



XML creates bean without field injected

2018-06-22 22:08:04.309  INFO 10400 --- [           main] 
s.s.x.app.XmlVsJavaconfigApplication     : Started 
XmlVsJavaconfigApplication in 0.953 seconds (JVM running for 
1.258)
Let's inspect the beans provided by Spring Boot:
chickpea     
xmlvsjavaconfig.commonbeans.Chickpea@30c93896
simpleBeanFactoryAwareAspectInstanceFactory     null

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns="http://www.springframework.org/schema/beans"
       xsi:schemaLocation="http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans.xsd">

    <bean id="newAndShiny" 
class="xmlvsjavaconfig.configuration.NewAndShiny"/>

    <bean id="chickpea" 
class="xmlvsjavaconfig.commonbeans.Chickpea"/>
</beans>



Bean without parameterless constructor

public class BlackEyedBean {
    private final SimpleBeanFactoryAwareAspectInstanceFactory springBean;

 public BlackEyedBean
(SimpleBeanFactoryAwareAspectInstanceFactory springBean){
        this.springBean = springBean;
    }

    public SimpleBeanFactoryAwareAspectInstanceFactory getSpringBean() {
        return springBean;
    }
}



Bean without parameterless constructor

● Compilation failure



Bean without parameterless constructor
● IDE error





Package scan hell (* as feature)

@Configuration
public class NewAndShiny {
    @Bean
    public BagOfBeans bagOfBeans(@Autowired List<CommonBean> commonBeans) {
        return new BagOfBeans(commonBeans);
    }

}

● We introduce new bean which will serve 
as container for our common beans and 
use @Autowire



Package scan hell (* as feature)

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:context="http://www.springframework.org/schema/context" 
xmlns="http://www.springframework.org/schema/beans"
       xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans.xsd 
http://www.springframework.org/schema/context 
http://www.springframework.org/schema/context/spring-context.xsd">

    <bean id="newAndShiny" class="xmlvsjavaconfig.configuration.NewAndShiny"/>

    <context:annotation-config/>
    <context:component-scan base-package=

"xmlvsjavaconfig.commonbeans"/>
</beans>

● We add component scanning inside 
configuration

● Feature: we scan only external package but 
all beans will be picked up



Package scan hell (* as feature)

@Configuration
public class BeansThatAreNotPackageScanned {

    @Bean
    public List<CommonBean> commonBeans() {
        return asList(new BlackEyedBean());
    }

    @Bean
    public LimeBean limeBean() {
        return new LimeBean();
    }
}

● New configuration will return a list with 
BlackEyedBean and instance of LimeBean



Package scan hell (* as feature)

package xmlvsjavaconfig.commonbeans.notsocommon;

import org.springframework.stereotype.Component;
import xmlvsjavaconfig.commonbeans.CommonBean;

@Component
public class GreatNorthernBean implements CommonBean {
}

We create subpackage with bean in it



Package scan hell (* as feature)

package xmlvsjavaconfig.commonbeans;

@Component
public class Chickpea implements CommonBean {
}

public class LimeBean implements CommonBean {
}

public class BlackEyedBean implements CommonBean { 
}

At that point we have 5 beans in total
 in our application

Package scanned

Created with @Bean

List containing this instance
created with @Bean



Package scan hell (* as feature)

@Component
public class BlackBean implements CommonBean {
    public BlackBean() {
    }
}

package xmlvsjavaconfig.commonbeans.notsocommon;

import org.springframework.stereotype.Component;
import xmlvsjavaconfig.commonbeans.CommonBean;

@Component
public class GreatNorthernBean implements 
CommonBean {
}

Package scanned

Package scanned ?



Q: How many CommonBeans do we get?
@Bean
public CommandLineRunner commandLineRunner(ApplicationContext ctx) {
        return args -> {
            System.out.println("Let's inspect the beans provided by  
            Spring Boot:");

System.out.println("bagOfBeans");  
System.out.println(ctx.getBean("bagOfBeans"));
        };
    }
}



A: Lots but not all
● We do not get bean instance created 

in @Configuration and wrapped in list

Let's inspect the beans provided by Spring Boot:
bagOfBeans
BagOfBeans{commonBeans=
xmlvsjavaconfig.commonbeans.LimeBean@275bf9b3, 
From java config
xmlvsjavaconfig.commonbeans.BlackBean@1b8a29df, 
xmlvsjavaconfig.commonbeans.Chickpea@4fbe37eb, 
xmlvsjavaconfig.commonbeans.notsocommon.GreatNort
hernBean@12a94400
]}Package scanned



Answer in a moment



Package scan hell (* as feature)

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:context="http://www.springframework.org/schema/context" 
xmlns="http://www.springframework.org/schema/beans"
       xsi:schemaLocation="http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans.xsd 
http://www.springframework.org/schema/context 
http://www.springframework.org/schema/context/spring-context.xsd">

    <bean id="newAndShiny" class="xmlvsjavaconfig.configuration.NewAndShiny"/>
</beans>

Lets remove package scan 

@Configuration
public class BeansThatAreNotPackageScanned {

    @Bean
    public List<CommonBean> commonBeans() {
        return asList(new BlackEyedBean());
    }
}

and LimeBean



Package scan hell (* as feature)

Let's inspect the beans provided by Spring 
Boot:
bagOfBeans
BagOfBeans{commonBeans=[xmlvsjavaconfig.co
mmonbeans.BlackEyedBean@181e731e]}

And we get our list of beans
from Java configuration



Package scan hell (* as feature)

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:context="http://www.springframework.org/schema/context" 
xmlns="http://www.springframework.org/schema/beans"
       xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/
beans/spring-beans.xsd http://www.springframework.org/schema/context 
http://www.springframework.org/schema/context/spring-context.xsd">

    <bean id="newAndShiny" class="xmlvsjavaconfig.configuration.NewAndShiny"/>

    <context:annotation-config/> 
    <context:component-scan base-package="xmlvsjavaconfig.commonbeans"/>
</beans>

Lets add back package scan 

@Configuration
public class BeansThatAreNotPackageScanned {

    @Bean
    public List<CommonBean> commonBeans() {
        return asList(new BlackEyedBean());
    }

    @Bean 
    public LimeBean limeBean() { 
        return new LimeBean(); 
    }
}

and LimeBean



What about @Resource injection?

@Configuration
public class NewAndShiny {
    @Resource
    private List<CommonBean> commonBeans;

    @Bean
    public BagOfBeans bagOfBeans() {
        return new BagOfBeans(commonBeans);
    }

}



@Resource collection injection

Let's inspect the beans provided by Spring Boot:

bagOfBeans

BagOfBeans{commonBeans=[xmlvsjavaconfig.c
ommonbeans.BlackEyedBean@21337f7b]}



CDI @Inject 

@Configuration
public class NewAndShiny {
    @Inject
    private List<CommonBean> commonBeans;

    @Bean
    public BagOfBeans bagOfBeans() {
        return new BagOfBeans(commonBeans);
    }

}

build.gradle :

compile('org.jboss.weld.se:weld-se-
shaded:3.0.5.Final')

More about CDI & Java EE later



We get same beans as with @Autowired

Let's inspect the beans provided by Spring Boot:
bagOfBeans
BagOfBeans{commonBeans=[
xmlvsjavaconfig.commonbeans.LimeBean@7ef27d7f, 
xmlvsjavaconfig.commonbeans.BlackBean@490caf5f, 
xmlvsjavaconfig.commonbeans.Chickpea@6337c201, 
xmlvsjavaconfig.commonbeans.notsocommon
.GreatNorthernBean@5c669da8
]}



Black magic f*ckery (SpEL & @Value)

@Configuration
public class NewAndShiny {
     @Value("#{commonBeans}")
    //@Qualifier("commonBeans")
    //@Named("commonBeans")

    @Autowired
    //@Inject
    private List<CommonBean> commonBeans;

    @Bean
    public BagOfBeans bagOfBeans() {
        return new BagOfBeans(commonBeans);
    }

}

mailto://@Named


What now?

Let's inspect the beans provided by Spring 
Boot:
bagOfBeans
BagOfBeans{commonBeans=[xmlvsjavaconfig.comm
onbeans.BlackEyedBean@27eedb64]}



Finally ...



@Autowired is not @Resource

● https://jira.spring.io/browse/SPR-8519
● @Autowire/@Inject not supported up until 3.0 at 

least, available as single candidate in Spring Boot
● @Resource to be used for injection of collections 

explicitely (it autowires by name as seen later)
● Spring >4.3 is able to inject collections by 
@Autowire with restrictions as shown by examples 

● Qualifying bean with @Value &SpEL or @Qualifier 
as option

● Also works with @Map

https://jira.spring.io/browse/SPR-8519


Package scan hell rehersal

● Tread carefully with mixing XML and Java 
Configuration and wiring collections

● Multiple options  for unambiguous collection 
injection by name:

- Use @Resource if you allow field or setter 
injection (Preferred option in Spring)

- Use @Qualifier @Autowired in other cases
● Spring will create collection out of all beans 

flying around in context but will not merge it 
with explicit collection declarations



Spring how to annotation scan
● When having a set of common interface 

implementations, strategies, commands, 
put them inside single package an scan it.

● Watch out for default filters 
● Define this in single encapsulated 
@Configuration class, treat this package just 
as a bag full of closely related beans where 
it is very easy to put them in future or 
retrieve them all at once.

● Always use 
@ComponentScan(includeFilters=””)



Q



Q
● Which of programming principles do 

the last two points from previous slide 
represent?



&A

Open-Closed Principle – we open for 
adding particular interface 
implementations but through white 
list inclusion we close for adding 
classes unrelated to the interface.



Spring configuration approach evolution
● Spring favoured configuration over 

convention
● This approach was created against 

Java EE convention over configuration 
approach in terms of functionalities 
available out of the box and available 
to application

● Some people where overwhelmed by 
number of features that were coming 
from Java EE servers when just simple 
servlet would suffice...



Spring configuration approach evolution
● Spring Boot uses auto configuration
● Spring Boot scans class path for 

resources and libraries connected to 
supported frameworks

● Spring Boot automatically creates all 
needed beans e.g. if we have data 
source configured and hibernate 
properties it will think that we want 
to use hibernate in our project

● This behaviour can be disabled



Pivotal stance



Spring configuration approach evolution
● An example why old Spring 

configuration approach was making 
people want to it all the chicken in the 
room …



Property injection Spring vs Spring Boot
    @Bean
    public CommandLineRunner commandLineRunner(ApplicationContext ctx) {
        return args -> {

            System.out.println("Let's inspect the beans provided by Spring Boot:");
            System.out.println("cannelliniBean");
            System.out.println(((CannelliniBean)                     

ctx.getBean("cannelliniBean")).getCannelliniBeanName());

        };
    }
}



Property injection Spring vs Spring Boot
package xmlvsjavaconfig.commonbeans;

import org.springframework.lang.NonNull;

public class CannelliniBean {

    private final String cannelliniBeanName;

    public CannelliniBean(@NonNull String cannelliniBeanName) {
        this.cannelliniBeanName = cannelliniBeanName;
    }

    public String getCannelliniBeanName() {
        return cannelliniBeanName;
    }
}



Property injection Spring vs Spring Boot
package xmlvsjavaconfig.configuration;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import org.springframework.context.annotation.PropertySource;
import xmlvsjavaconfig.commonbeans.CannelliniBean;

@Configuration

@PropertySource("classpath:common.properties")
public class NewAndShiny {

    @Bean
    public CannelliniBean cannelliniBean(

@Value("${cannellini.bean.name}") String beanName) {
        return new CannelliniBean(beanName);
    }

}



Property injection Spring vs Spring Boot
● common.properties

cannellini.bean.name="italianKidneyBean"



Property injection Spring vs Spring Boot
● Spring Boot:

● In spring nothing gets injected

2018-06-23 11:55:11.599  INFO 2812 --- 
[           main] s.s.x.app.XmlVsJavaconfigApplication  
   : Started XmlVsJavaconfigApplication in 0.89 seconds 
(JVM running for 1.196)
Let's inspect the beans provided by Spring Boot:
cannelliniBean
"italianKidneyBean"



Property injection Spring vs Spring Boot
● What is missing in bare Spring?
● Java Config:

● XML:

    @Bean
    public static PropertySourcesPlaceholderConfigurer 
propertySourcesPlaceholderConfigurer() {
        return new 
PropertySourcesPlaceholderConfigurer();
    }

<bean 

class="org.springframework.beans.factory.config.P
ropertyPlaceholderConfigurer"
      name="propertiesBean"/>



Property injection Spring vs Spring Boot
●  When using Spring Boot and using 

only XML context configuration all 
that would be needed is   

<context:property-placeholder 
location="classpath:application.propertie
s"/>

 



Property injection Spring vs Spring Boot
● In Spring boot as shown there is not 

need to add 
PropertyPlaceholderConfigurer by hand

● File named application.properties is 
by default read in order to retrieve 
properties

● If environment is defined in spring file 
application-environment.properties is 
read where environment is name of 
Spring profile 



Property injection Spring

● Properties defined in environment file 
will override properties in default 
properties file in case they clash

● @TestPropertySource or 
@SpringBootTest(properties=”some.pro
perties”)

can be used to configure test specific properties





Property injection Spring Boot
● Spring Boot is able to map properties 

from files to Java object graph with 
root in class annotated with 
@ConfigurationProperties

(prefix = "characteristics")
public class Characteristics {
    String color;
    String size;
    String taste;
    int length;



Property injection Spring Boot
@Configuration
@EnableConfigurationProperties(Characteristics.class)
public class NewAndShiny {

    @Bean
    public BlackBean blackBean() {
        return new BlackBean();
    }

    //OR

    @Bean
    public Characteristics characteristics() {
        return new Characteristics();
    }
}



Property injection Spring Boot
● application.properties

characteristics.length:42

● application.yaml
characteristics:
  color: black
  size: small

  taste: chicken



Property injection Spring Boot

     
BlackBean{characteristics=Characterist
ics{color='black', size='small', 
taste='chicken', length='42'}}



Property injection Spring Boot
● @PropertySource does not work 

with .yaml
● For more:

http://www.baeldung.com/
properties-with-spring

● @Value vs @ConfigurationProperties
● https://tuhrig.de/why-using-springs-

value-annotation-is-bad/



Nobody expects the Spanish Inquisition



Spring proxying problems

    @Bean
    public CommandLineRunner 
commandLineRunner(ApplicationContext ctx) {
        return args -> {
            System.out.println("Let's inspect the beans 
provided by Spring Boot:");
            
Stream.of(ctx.getBeanNamesForType(CommonBean.class))
                    .forEach(
                            beanName -> 

System.out.println(beanName 
+ "     " +  

ctx.getBean(beanName).toString()));
        };
    }



Spring proxying problems
@Configuration
public class NewAndShiny {

    @Bean
    public static PintoBean publicStaticPintoBean() {
        return new PintoBean();
    }

    public BlackBean noAnotationBlackBean() {
        return new BlackBean();
    }

    @Bean
    private KidneyBean privateKidneyBean() {
        return new KidneyBean();
    }

    @Bean
    LimaBean defaultLimaBean() {
        return new LimaBean();
    }



Spring proxying problems

    @Bean
    protected BlackedEyePea protectedBlackedEyePea() {
        return new BlackedEyePea();
    }

    @Bean
    public MrBean mrBean() {
        return new MrBean();
    }

    @Bean
    public final 

    GreatNorthernBean finalGreatNorthernBean() {
        return new GreatNorthernBean();
    }
}



Spring proxying problems

2018-07-30 21:09:55.176 ERROR 7788 --- [ main] 
o.s.boot.SpringApplication  : Application run failed
org.springframework.beans.factory.parsing.BeanDefinitionParsingEx

ception: Configuration problem: @Bean method 
'kidneyBean' must not be private or final; 
change the method's modifiers to continue
Offending resource: xmlvsjavaconfig.configuration.NewAndShiny



IDE to the rescue



Spring proxying problems
@Configuration
public class NewAndShiny {

    @Bean
    public static PintoBean publicStaticPintoBean() {
        return new PintoBean();
    }

    @Bean
    LimaBean defaultLimaBean() {
        return new LimaBean();
    }

    @Bean
    protected BlackedEyePea protectedBlackedEyePea() {
        return new BlackedEyePea();
    }

    @Bean
    public MrBean mrBean() {
        return new MrBean();
    }
}



Spring proxying problems
Let's inspect the beans provided by Spring Boot:
publicStaticPintoBean     
xmlvsjavaconfig.commonbeans.PintoBean@60b4beb4

defaultLimaBean     xmlvsjavaconfig.commonbeans.LimaBean@7fcf2fc1

protectedBlackedEyePea     
xmlvsjavaconfig.commonbeans.BlackedEyePea@2141a12

mrBean     xmlvsjavaconfig.commonbeans.MrBean@4196c360



Spring proxy approaches
● When you create a bean in Spring proxy object 

may be created (transaction proxies, db exception 
translation proxies, aop proxies).

● When the bean is instance of a class that 
implements interface proxy is created as 
JdkDynamicProxy.

● When the bean does not implement any interface 
and CGLib is available on classpath CGLib proxy is 
created.

● From Spring 3.2 CGLib comes bundled with Spring
● This is why casting bean instance will fail with 
ClassCastException

● Actual implementation class/object can be 
retrieved



Proxying sideeffects
● Private & final methods cannot be proxied
● Final classes cannot be proxied
● Proxies are not seriallizable
● There's little performance difference 

between CGLIB proxying and dynamic 
proxies. 

● As of Spring 1.0, dynamic proxies are 
slightly faster. However, this may change in 
the future. 

● Performance should not be a decisive 
consideration in this case.



When does Spring creates proxy
● Bean is annotated @Repository.

● @Transational, @Transaction is defined at 
any level.

● Bean is @RestController or mapping 
annotations are used.

● Bean is @Entity.

● Inside Java configuration if bean is 
referenced through method but only if 
configuration is picked up through Spring 
and not created by new!



Spring proxying problems
@Configuration
public class NewAndShiny {

    @Bean
    public static PintoBean pintoBean() {
        return new PintoBean();
    }

    @Bean
    LimaBean limaBean() {

        return new LimaBean(blackedEyePea());
    }

    @Bean
    protected BlackedEyePea blackedEyePea() {
        return new BlackedEyePea();
    }

    @Bean
    public MrBean mrBean() {
        return new MrBean();
    }
}



Spring config debugging

● If bean definition is not found:
● Check if you scan all required 

packages
● Create explicit configuration based on 

java config to see at which point 
compilation fails

● @Bean method is missing, @Component is 
missing, package containing bean 
implementation is not scanned



Spring config debugging
● If multiple definitions of bean are found:

- Check how many contexts create instances of given bean class 
either through package scan (check each package level) or explicitly

- Check which of those contexts are used by your context manually if 
there is more than one (IDE may help).

● Double check that you should really have two contexts imported 
which create same bean instance

● If injected bean is defined in  multiple contexts that are part of same 
context dependency tree, refactor contexts configuration to remove 
duplication e.g define bean in first common node between two 
branches of dependency tree (move bean definition up on 
dependency tree)

● Extract bean to separate configuration in order to get rid of entire 
branches of dependencies if multiple bean definitions were result of 
overgrown dependency tree where entire context is imported in 
order to inject one bean(corner case is bean which has no 
dependencies or fixed dependencies and is injected through 
dependency tree just because “we already are creating this bean 
instance”)



Spring config debugging

● Resolving bean ambiguity
● Add @Qualifier to @Autowired in order 

to choose correct bean implementation
● There is also @Resource which is part of 

JSR-250 which is meant to be injected 
by name but works only on field and 
setter injection and is not 
recommended by Spring since it does 
now work with constructor injection





Spring config debugging evil
● All non-Java EE JSR 250 annotations were added to the Java SE with 

version 6 (@Generated, @PostConstruct, @PreDestroy, @Resource, 
@Resources). They are located in the package javax.annotation

- This is a little warning since it shows that javax. Packages are not 
only related to java ee but also cross cutting concepts

- Actually @Qualifier is part of javax. package

- Make sure you have Java classes for Java ee packages on classpath 
(Spring boot adds them, Spring framework on tomcat doesn’t) and 

-“JLS 13.5.7: " ... removing annotations has no effect on the correct 
linkage of the binary representations of programs in the Java 
programming language."

- This means that Java ignores annotation if they are not present in 
runtime 

- https://4programmers.net/Profile/78878/Microblog?page=4 - 
search for javax.transaction.Transactional, zamiast 
org.springframework.transaction.annotation.Transactional “Ale dziś 
magię rozwaliłem”

https://4programmers.net/Profile/78878/Microblog?page=4


Spring config debugging PURE EVIL
● How not to have issues with Java EE packages 

missing in runtime – deploy on Java EE 
server ]:->

● Josh Long 
https://spring.io/blog/2014/03/07/deploying
-spring-boot-applications

● There is a section What about the Java EE 
Application Server? Which shows how to make 
Spring Boot .war running on Java EE servers 

● By Josh Long the “make .jar not .war” guy

● May require more work with Spring Boot 2.x,
War packaging is still available.



Spring config debugging
● @Resource javax.annotation Java

● @Inject javax.inject Java

● @Qualifier javax.inject Java
Watch out!

● @Qualifier 
org.springframework.bean.factory.annotati
on Spring

● @Autowired 
org.springframework.bean.factory Spring



Spring config debugging

“ @Autowired and @Inject

Matches by Type

Restricts by Qualifiers

Matches by Name

@Resource

Matches by Name

Matches by Type

Restricts by Qualifiers (ignored if match is found by name)
 ”

https://stackoverflow.com/questions/4093504/
resource-vs-autowired



Spring config debugging

● Spring = 

1) @Bean(name = "") or @Component + @Qualifier

2) @Autowired + @Qualifier

● CDI =

1)Create spring bean with explicitly given 
name

2) Inject with @Resource



Spring config debugging
● Use CDI’s @Alternative in order to 

manage bean ambiguity
● Since CDI 2.0 it has been moved from 

Java EE to Java SE but requires at 
least Weld SE implementation on 
Classpath

● @Alternative shows that there are 
multiple bean implementations and 
requires programmer to choose 
explicitly which one will be used



Spring config debugging

● @Primary forces Spring to use annotated 
bean when multiple bean definitions are 
found

● Every time you use @Primary small kitten 
dies, especially if class created by package 
scan is set to @Primary. This means that it 
will be primary for all contexts which 
instantiate this beans which may not be 
wanted behaviour 

● Unless you do it for debugging



Spring config debugging



Information about Spring
● Spring documentation (Even minor 

version matters!)
● Baeldung
● Safari Books
● Coursera
● GitHub



Information about Spring



TBC?
● Spring Profiles vs Environment vs 

build time configurations vs 
configuration hell

● Deep dive in Spring/Java properties
● Problem investigation in enterprise 

environment



Q&A

42



Q&A



DuckDuckGo

● Blocks Ad Trackers
● Full control about search data - even 

before GDPR
● Supports !bangs, !w  will search 

Wikipedia directly
● Favours StackOverflow answers
● Drops out pure searches instead of 

tailored ones like G



Q&A





www.facebook.com/dtkociegniazdko



Common beans
● https://www.realsimple.com/food-recipes/

shopping-storing/food/common-types-
beans


